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A Lanczos procedure is applied to a Navier-Stokes solver for computing eigenvalues and 
eigenvectors. These eigenvalues and eigenvectors are associated with small perturbation 
analysis of a finite difference representation of the Navier-Stokes equations for flows over air- 
foils. A combination of block tridiagonal matrices is converted into a two-dimensional matrix 
for this eigensystem calculation. This matrix is very large, sparse, real, and nonsymmetric. 
A separate procedure, based on lopsided iteration, is also used to determine the eigensystem. 
The results from these two procedures are compared. The Lanczos procedure provides 
complete spectral information about the eigenvalues, whereas the lopsided iteration 
provides only a few of the eigenvalues which are largest in magnitude and the corresponding 
eigenvectors. Such eigensystem information is central to transient stability analysis 
of Navier-Stokes solvers, for determining the modal behavior of fluid in a fluid-structure 
interaction problem and for development of reduced order models based on variational 
principles for Navier-Stokes solvers. (c 1991 Academic Press, Inc. 

INTRODUCTION 

Eigensystem analysis of dynamic equilibrium equations for a structural system 
has been a standard procedure among researchers for many years. Dynamic equi- 
librium equations for a structure are written either in a finite difference or a finite 
element form. The mass, stiffness, and damping matrices are calculated in order to 
formulate an eigenvalue problem for the structure. With the advent of larger and 
faster computers, it is possible to‘ analyze structures of increasing complexity, 
starting with strings, beams, plates, shells, truss assemblies, etc. Various methods 
have been developed to determine eigenvalues and corresponding eigenvectors 
for these structural dynamics equations. The matrices involved in eigensystem 
calculation are real, symmetric, and sometimes positive definite. Also they can 
be formed easily once the governing equations are discretized. See [l] for a 
comprehensive treatment of eigensystem problems in structural dynamics. 

In fluid dynamics, nonlinearity in the governing equations and the use of 
Eulerian reference frame make it very difficult to formulate an eigensystem analysis. 
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Discretization schemes, block treatment of variables, and linearized solution proce- 
dures used in fluid dynamics problems further complicate the formulation of 
an eigensystem analysis. The existing eigensystem analysis procedures developed 
for structural dynamics problems are thus clearly incapable of modeling fluid 
dynamics problems. 

Over the last few years, many researchers have developed algorithms and codes 
to obtain steady state solutions for fluid dynamics problems. The Euler or 
Navier-Stokes equations are solved in a time marching fashion with approximate 
initial starting data (usually uniform flow conditions) and are converged to a steady 
state flowlield in an iterative manner. The main motivation behind previous 
attempts to perform an eigensystem analysis of fluid dynamics problems was to 
improve the convergence rates of these iterative schemes. Eigensystem information 
was used to reduce the number of time steps required to reach a steady state 
solution and accelerate the convergence. 

Lomax et al. [2] formulated and determined an eigensystem for a one-dimen- 
sional diffusion equation expressed in a finite difference form. They formed the 
matrix analytically and used standard eigenvalue-computing routines to calculate 
the eigenvalues numerically. These routines are limited in application to matrices up 
to, at most, order 200. Eriksson and Rizzi [3] formed an eigensystem analysis for 
transonic Euler equations. They used Frechet derivatives to develop the Jacobian 
matrix with Arnoldi’s method to condense it into an upper Hessenberg matrix. The 
eigensystem was determined about an arbitrary solution point during the time 
marching and depended on the time step used for time marching. A spectrum trans- 
formation was used to extract “interesting” eigenvalues from Arnoldi’s method. 
Cheer et al. [4] used a simular procedure to determine the eigensystem of a one- 
dimensional nozzle flow and to improve the convergence rates. Saleem [S] used 
Arnoldi’s method with Frechet derivatives for a one-dimensional nozzle flow 
and a two-dimensional Navier-Stokes solver for flow over airfoils. He applied the 
eigensystem information to spectrum shifting algorithms for accelerating the 
convergence to a steady state flowfield. Nordstrom [6] studied the eigensystem 
corresponding to linearized, symmetrized two-dimensional Navier-Stokes equa- 
tions. The equations were Fourier transformed in the y-direction and Laplace 
transformed in the t-direction. He analyzed the effect of inflow, outflow type 
boundary conditions in the x-direction, on the stability of the solution algorithm. 
Eigenvalues were calculated from a continuous and also a semi-discrete model. 
Nordstrom [6] and also Engquist and Gustafsson [7] have studied substantially 
simpler physical problems and smaller numerical problems with the purpose of 
accelerating numerical convergence employing some of the techniques that are also 
used in this paper. 

These existing ways for formulating an eigensystem analysis have a narrow 
application and that is to improve the convergence rates for a steady state solution, 
where accurate time histories are not important. (A complete eigensystem may be 
needed for some other applications, such as developing reduced order models, in 
the time accurate sense). Due to the partial evaluation of the Jacobian matrix about 
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a solution point with Frechet derivatives and subsequent use of Arnoldi’s method, 
one can never obtain the complete eigensystem. Moreover, the eigenvalues 
calculated using these methods are time step dependent. Finally, both analytical 
and numerical temporal discretizations are used in forming these eigenvalue 
problems. By contrast, in classical, exact eigenvalue problems, spatial discretization 
is done numerically and temporal dependence is expressed analytically. 

The Navier-Stokes solver used in the present work represents the formulation 
and equations used by computational fluid dynamics (CFD) researchers and practi- 
tioners for analyzing complex flows such as unsteady, transonic, viscous flows over 
airfoils. These CFD codes typically run for hours on supercomputers and have a 
very large number of degrees of freedom. The eigensystem information of such 
solvers is important in many respects. It can be used for determining the necessity 
of line grids in the physical domain which result in a very large number of degrees 
of freedom. The order of the system can be reduced by modal reduction techniques 
based on the eigensystem (similar to structural analysis). The eigenmodes corre- 
sponding to the continuous physical problem, the discretization scheme, the 
physical and numerical boundary conditions, the steady state flowlield, the artificial 
dissipation, and the grid density and size can be distinguished to understand the 
physical problem and its numerical model better. 

In the present work, the first such effort is made to formulate a classical, exact 
eigensystem problem for a Navier-Stokes solver with application to flows over 
airfoils. The eigenvalue problem associated with small amplitude time dependent 
perturbation analysis of a finite difference representation of the full Navier-Stokes 
equations is formulated with respect to steady flow over airfoils. It should be noted 
that this steady flow calculation is independent of the time step used to reach it and 
the eigenvalue problem formulated about this steady flow uses a semi-discrete 
method. In this eigenvalue problem, the spatial discretization is done numerically 
(based on the grid), whereas the temporal discretization is done analytically. 
The resulting eigenvalue problem is thus independent of the time step, in contrast 
to the earlier eigenvalue problem formulations about transient solutions. The 
Navier-Stokes solver uses a combination of block tridiagonal matrices to determine 
the flowlield at each time step. In this eigensystem calculation, these matrices are 
converted into a two-dimensional matrix. This conversion is accomplished by 
writing the independent flow variables into a single array (instead of a two- 
dimensional matrix) and then transforming the corresponding four-dimensional 
coefficient matrix into a two-dimensional matrix. This matrix is very large 
(24,000 x 24,000), sparse, real, and unsymmetric. 

The state of the art software available for eigenvalue calculation (EISPACK, etc.) 
is NOT capable of storing a 24,000 x 24,000 matrix or utilizing the sparsity and 
nonsymmetry of the present problem for obtaining a solution in reasonable com- 
puter time. A modified Lanczos recursive procedure with no reorthogonalization is 
used to calculate the eigenvalues and the corresponding eigenvectors. A separate 
procedure, based on lopsided iteration, is also used to determine the eigensystem as 
an independent check. The results from these two procedures are in good agree- 
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ment. The Lanczos procedure provides complete spectral information about the 
eigenvalues. It calculates the eigenvalues that are at both ends of the spectrum and 
then the ones in the middle of the spectrum [S]. However, the lopsided iteration 
procedure provides only a few of the eigenvalues that are largest in magnitude or 
at only one end of the spectrum [9]. 

This eigensystem information has many attractive and important applications. It 
can be used in transient stability analysis of Navier-Stokes solvers. The fluid modal 
behavior in a fluid-structure interaction problem (e.g., flutter) can also be deter- 
mined from a knowledge of the eigensystem associated with the fluid dynamics 
equations. Models of reduced order can be developed, using variational principles 
and eigenvector transformation to modal coordinates, to calculate system response. 
At present, these types of methods are widely used in structural dynamics. The 
present work is intended to provide the information necessary for extension of these 
methods to fluid dynamics. 

NAVIER-STOKES SOLVER 

A Navier-Stokes code capable of calculating unsteady, transonic and separated 
flows for different airfoil motions, such as pitching and plunging, was selected for 
the eigenvalue analysis. This finite difference, time marching code was developed by 
Sankar, based on the Beam-Warming algorithm [lo]. This code solves the 
unsteady, two-dimensional Navier-Stokes equations on a body-fitted moving coor- 
dinate system in a strong conservative form using the alternate direction implicit 
(ADI) procedure with approximate factorization L-111. The convective terms are 
treated implicitly and the viscous terms are treated explicitly. The body-fitted grid 
is of the C-type and is shown in Fig. 1. This code is the latest in the series of 
Navier-Stokes solvers currently in use for transonic, viscous unsteady problems. It 
has received wide attention from the aerodynamic research community. Only those 
parts of the Navier-Stokes solver essential for understanding the present work are 
described below. 

All the calculations are performed in a transformed coordinate system ([, q, T) 
which is linked to the moving, body-fitted coordinate system by equations of the 
following form: 

r = 4(x, Y, I), ? = rl(x, Y, t), T = t(t). (1) 

The Jacobian of transformation is given by 

J=r.?,-5.,,rl,=l/(x5Y~-x?Yr). (2) 

The two-dimensional unsteady Navier-Stokes equations in the transformed coor- 
dinate system are written as 

(ir+&+G,=R,+S,, (3) 
where 

g=J-L(P, pu, PC e>; (4) 
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FIG. 1. The C-grid around a NACA 0012 airfoil used in the Navier-Stokes code. 

p is the fluid density, u and v are the Cartesian components of fluid velocity, and 
e is the total energy of the fluid per unit volume. The quantities F, G, 8, and 3 are 
given by 

F= (W+ tyG + 4,4)/J 

~7 = CM+ rl.vG + v,NJ 

~=(LR+t,WJ 
(5) 

3=(q,~+tj,S)p 
and 

F= (PU, PU* + P, pm u(e + P)) 
G = (PU, pw PO* + P, o(e + ~1) 

R = (0, L, ~x.v &I 

s = (0, T”.’ Ty,v,,., S,) 

R, = UT,, + txx, + K(a*)., 

s4 = UT,, + vzyy + 02),, 
where a is the speed of sound and K is the thermal conductivity. 

(6) 
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In Eq. (3), central differencing is used for spatial derivatives and forward dif- 
ferencing is used for time derivatives. The resulting equation in the discretized form 
at any point (i, j) is 

where Aq;+ ’ = g$+ ’ - 45, and the superscripts n and n + 1 refer to two successive 
time levels. D is the artificial viscosity term containing spatial derivatives of second 
and fourth order and sE controls the amount of this explicit artificial viscosity. The 
highly nonlinear terms F and G are then expanded in a Taylor series about time 
level n. The resulting equation is then approximately factored into two operators so 
as to allow for two sweeps, a t- and an q-sweep, during which block tridiagonal 
matrix equations are solved. To allow for the explicit treatment of the viscous 
terms, implicit smoothing terms are added to the left-hand side of Eq. (7). These 
terms contain spatial derivatives of second order and E[ controls the amount of 
implicit smoothing. The final form of the governing equation is 

= [-(6;~+6,G”)+s,~n+6,S”-~ED”] AZ, (8) 

where A = [aF/&j]” and B = [dC/dq]“. 
The above approximate factorization leads to two sweeps, a r- and an q-sweep, 

during which block tridiagonal matrix equations are solved. All the boundary con- 
ditions are explicitly applied at each time step. At the far field boundaries, except 
in the downstream boundary, the flow field is assumed to be undisturbed. At the 
downstream boundary, the velocity field U, v and the entropy are extrapolated from 
the interior, so as to allow for vorticity transport. The pressure at the downstream 
boundary is prescribed to be the freestream pressure. On the solid boundary, for 
inviscid flows, the normal velocity is set to zero and, for viscous flows, the normal 
and tangential velocities are set to zero. The density is extrapolated from the 
interior. For calculation of viscous, turbulent flows, a two-layer Baldwin-Lomax 
eddy viscosity model is used [12]. 

Artljkial Viscosity Terms 

In this Navier-Stokes solver, a switched dissipation scheme as proposed by 
Jameson [13], is used. The dissipation terms are written, in conservation form, as 
a combination of second- and fourth-order terms. A sensor, based on the second 
derivative of pressure, turns on the second-order dissipation term in the vicinity of 
shocks and suppresses the fourth-order dissipation term. Jameson’s approach leads 
to crisp, three-point shocks in most cases, without the overshoots. This switching 
was employed only in the streamwise ([-) direction in this Navier-Stokes solver. 
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The dissipation term is written as 

D,=J-1G,,,,(J~)+di~(4.+2,j-36,+,,j+34,-41~l.j) 
I+ 112, j 

-c2(~i+l,j-4ij)l Ji+ 1/2,j 
(9) 

where 

C2 = Max(Bii9 Pi+ 1.j) 

and 

and 

C, = Max(0, 1 - C,). 

Here H is a user-input value, of the order of 10. The quantity fiii senses the second 
derivative of pressure and is large only near shocks. This leads to a non-zero 
value for Cr, near shocks. The value Ji+ 1/z, j needed in the above calculation is 
computed as 

(10) 

The effect of these artificial viscosity terms on the transient stability of the 
Navier-Stokes solver is described in detail in [14]. 

EIGENVALUE PROBLEM 

An eigenvalue problem is formulated for the Navier-Stokes code. Since p, G, i?, 
3 are functions of 9, Eq. (3) can be rewritten as 

ij,= -F,-G,+R,+S,=&7). (11) 

Here a(g) also contains the artificial viscosity terms. For small perturbations about 
steady flow, the following eigenvalue problem results. Substitute q= 4 + 4 
in Eq. (11 ), where 4 is the steady state value; 4 is the small time dependent pertur- 
bation. This gives 

(12) 
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In the results discussed here, only inviscid flows are considered. The same 
procedure applies to viscous flows also. At present, the viscosity model used in the 
Navier-Stokes solver is of an empirical nature. Thus, to determine the contribution 
of viscous terms to [d@dq],, the 24,000 x 24,000 derivatives will have to be 
evaluated numerically and the computational costs are prohibitive. If an analytical 
viscosity model were used, these derivatives could be evaluated analytically. 

At steady state flow conditions, e(q) is equal to zero, which reduces Eq. (12) to 

(13) 

Substitute 4 = qe” in Eq. (13): 

Equation (14) can be written in matrix form as 

Consider Eq. (8) before approximate factorization, 

(14) 

(15) 

(16) 

where A = [ap/laq], and B = [aZ’/&j],. Analytical expressions are written for A, B, 
J and [dD/dij],. The contribution of convective terms to this derivative (A and B) 
is determined analytically. The analytical nature of these contributions in both 
q- and t-directions are given in detail in [15]. 

The following discussion explains the conversion of block matrices (commonly 
used in CFD) into two-dimensional matrices and vectors (commonly used in eigen- 
value problems). This conversion can sometimes pose a significant problem as 
block CFD schemes are usually optimized for computer memory storage and vector 
operations. In the Navier-Stokes solver, q is a matrix of dimension (4, imax, jmax), 
where imax is the maximum number of grid lines in x-direction and jmax is the 
maximum number of grid lines in y-direction. At each grid point (i, j), four flow 
variables are present as given in Eq. (4). This matrix is converted to a vector 
containing (4 x imax x jmax) number of variables. This vector contains four flow 
variables in a serial order for jmax number of points on imax number of lines. In 
the Navier-Stokes solver, the matrices A and B have dimension of (4, 4, imax, 
jmux), the matrix J has dimension of (imax, jmax) and the matrix D has dimension 
of (4, imax, jmax). The same transformation that converted the matrix q into a 
vector, is applied to the matrices A, B, J, and D to give a resultant matrix P of 
dimension (4 x imax x jmax, 4 x imax x jmax). This matrix is sparse and is stored in 
a rowwise, unordered format. For a typical flow condition this matrix is about 
0.09 % full. 
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Due to the alternate direction implicit (ADI) procedure used in the 
Navier-Stokes solver, the matrices A and B are evaluated for different ordering of 
vector containing q to maintain the tridiagonal form. The first one orders q as jmax 
number of points for imax number of lines ({-sweep) and the second one orders q 
as imax number of points for jmax number of lines (q-sweep). The order used in 
forming the resultant matrix P is jmax number of points at imax number of lines. 
The matrices A, B, J, and D are calculated in sparse format, before adding their 
spatial derivatives. For sparse matrix operations and algebra, all the subroutines 
are written explicitly to keep the code portable and independent of the computer 
system being used [ 161. All the matrices are converted to a form, where a standard 
eigenvalue analysis can be applied. It should be noted that in the limit of At going 
to 0, Aq”+’ is equivalent to 4. 

EIGENSYSTEM CALCULATION 

In Eq. (15), P is a sparse, real, nonsymmetric matrix of order n, where n = 
4 x imax x jmax z 24,000. The state of the art software available for eigenvalue 
calculation (EISPACK, etc.) is NOT capable of storing a 24,000 x 24,000 matrix or 
utilizing the sparsity and nonsymmetry of the present problem for obtaining a solu- 
tion with reasonable computer time. A procedure that would exploit the sparsity of 
the matrix for storage and calculation purposes is needed. The iterative methods, 
for eigenvalue calculations on this scale, need a very good initial guess for 
convergence. Also they are not capable of providing spectral information about 
the eigenvalues. The “reduction to condensed forms” methods, however, provide 
a suitable procedure to attempt a solution to this eigenvalue problem. These 
methods reduce a general matrix to a smaller matrix with some special properties. 
The original matrix and the reduced matrix are proven to have a very similar 
eigensystem [ 171. 

Modified Lanczos Procedure 

A modified Lanczos recursive procedure with no reorthogonalization is used to 
calculate the eigenvalues. For very large real, symmetric matrices, the Lanczos 
procedure is one of the most widely used ways to estimate the eigenvalues due to 
its efficiency and range of eigenvalues calculated [ 173. This procedure was modified 
by Cullum and Willoughby [18] for nonsymmetric matrices. A family of complex, 
symmetric, tridiagonal matrices which represent orthogonal projections of the given 
original matrix P onto the corresponding Krylov subspaces are calculated during 
this recursive procedure. The eigenvalues of these Lanczos matrices are the eigen- 
values of the operators obtained for P by restricting P to the Krylov subspaces. 
These eigenvalues are found to be independent of the starting vectors used in the 
recursion. A more general summary of Lanczos procedure and its modifications is 
given in [S]. The theoretical background of the Lanczos procedure is beyond the 
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scope and size of this paper and is explained in [S, 171. Only the computational 
implementation of the modified procedure is explained in this paper. 

Let P be a real n x n matrix. Let oi and wi be two n x 1 vectors with their 
Euclidian “inner product” ufw, = 1. These starting vectors can be complex vectors. 
For i= 1, 2, . . . . m, the following recursions are used to define Lanczos vectors 
W, = {w, , . . . . w, > and V, = {u, , . . . . u,} and scalars C(~ and pi+, such that 

lli+,ui+1 = Pvi - a,v, - /livi , = rr + I 

Pi+1Wi+, = PTW, - ct;w; - j3;wp, 3 ti+ * 
(17) 

a; = (cl; + cYr’)/2, BY+ 1 = (rT+ 1 fi+, 1 

ay E wT(Pv, - fiiUi& ,), a~-u~(P=W;-/?iWi~-l). 

Recursions are started with w, = ui ; thus the only nonsymmetry in this calcula- 
tion is due to the nonsymmetry of P. Even if these starting vectors are real, the 
nonsymmetry of P soon gives rise to complex vectors. The coeflicients CL~ and B, 
are chosen such that the sets of Lanczos vectors W, = { wlr . . . . w,} and V, = 
{u I, . . . . u,} are (real) biorthogonal. The corresponding complex, symmetric, 
tridiagonal Lanczos matrix is defined by the scalars cli and pi+, as 

L=[” ” ar~,l 4,]. (18) 

This can also be written as T, = WiPV,. Initially, subroutines from 
EISPACK were used to calculate the eigenvalues for a general complex matrix, 
which restricted the number of eigenvalues that could be calculated because the 
memory requirement was 0(n*) and the time requirement was 0(n3). A procedure 
based on the QL algorithm was later incorporated in the code. This procedure has 
a memory requirement of O(n) and a time requirement of 0(n’) [19]. The eigen- 
values of T,,, are very close approximations to the eigenvalues of P. As m increases, 
these approximations get better. Normally, good approximations are obtained for 
m greater than &. 

To improve computational efficiency, no reorthogonalization is used. This gives 
rise to “spurious” eigenvalues. After a particular eigenvalue of T, has converged 
to an eigenvalue of P and the corresponding Ritz vector has converged to an eigen- 
vector, the subsequent recursions give rise to linearly dependent Ritz vectors and 
the biorthogonality of Lanczos vectors is soon lost. This when compounded with 
the finite precision arithmetic, gives both “good” and “spurious” eigenvalues. This 
can be corrected by employing reorthogonalization during the recursion process. 
An alternative is to distinguish between “good” and “spurious” eigenvalues. The 
most common and computationally efficient way of doing this is to calculate eigen- 
values of T,,, for some m and then repeat the calculation for a larger m [8]. The 

581/97.2-II 
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“good” eigenvalues repeat in these calculations for different m, whereas the 
“spurious” eigenvalues do not repeat. Also, since P is real, its eigenvalues are either 
real or complex conjugates, but T,,, is a complex matrix and may have eigenvalues 
that are not necessarily the complex conjugates. In the present work, m is varied 
between 1000 and 1500. 

A representative eigenvalue constellation is shown in Fig. 2. Inviscid flow over a 
NACA 0012 airfoil at an angle of attack of zero degrees and a Mach number of 0.8 
is considered. The eigenvalues that repeat for different m are the good eigenvalues 
and they also appear as complex conjugates. The eigenvalues with the largest and 
the smallest magnitudes (not necessarily the real parts), i.e., at both ends of the 
spectrum, are calculated first. The eigenvalues in the middle of the spectrum are 
calculated as m is increased further. Various eigenvalue constellations for different 
amounts of artificial viscosity are presented in [ 141. 

It turns out, fortunately, that the eigenvalues with the smallest magnitudes 
(smallest frequencies) generally have the most positive real parts, i.e., the least 
damping. See Figs. 2, 3, and 4 and also further results in [ 141. 

The eigenvectors of P corresponding to the “good” eigenvalues are determined 
as follows. First, the eigenvectors {z} of T,,, corresponding to the “good” eigen- 
values are computed. The transformation {q} = [I’,] {z> gives the eigenvectors 
(q} of P. These eigenvectors are complex and of the dimension (4 x imax x jmax) 
or n. At present, the calculation procedure calculates both the eigenvalues and the 
corresponding eigenvectors. The eigenvectors are not shown in this paper as they 
are vectors consisting of 24,000 complex numbers and could not be plotted on a 
highly clustered grid. 
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FIG. 2. Eigenvalue constellation for different values of M (NACA 0012 airfoil, M = 0.8, inviscid flow, 
a=O”, s,=O, eE=O). 



EIGENVALUES OF A NAVIER-STOKES SOLVER 409 

Lopsided Iteration Procedure 

Simultaneous iteration methods are extensions of the power method whereby 
iteration is carried out with a number of trial vectors that converge onto the eigen- 
vectors corresponding to the dominant eigenvalues. For nonsymmetric matrices, a 
bi-iteration technique is used to predict left and right eigenvectors simultaneously. 
When only one set of eigenvectors is required, lopsided iteration technique is used. 
The algorithm used in the present work is given in detail in [9]. 

Each iteration cycle of the lopsided iteration involves premultiplication and 
reorientation, followed by normalization and a tolerance test. The basic procedure 
is as follows: 

Premultiplication. Let P be a matrix of order n for which eigenvalues and right 
eigenvectors are required. P is premultiplied by a n x m set of normalized vectors 
u- (a,, . ..) urn}. If the resulting set of vectors is V= {u,, ..,, u,}, then 

v= PU. (191 

This step is carried out k number of times after substituting V in place of U for 
successive multiplications. This results in a substantial reduction in computation 
time for a sparse matrix as premultiplication washes out the lower eigenvector 
components from the initial trial vectors. 

Reorientation. In this phase, an m x m interaction matrix C is obtained from the 
solution of a linear system of equations given by 

GC= H, where G = UTU and H= UTV. (20) 

In this calculation, the values of U and V are those obtained from premultiplica- 
tion phase. The complete eigensolution of C is then obtained. This eigensolution 
contains complex conjugate pairs as eigenvalues. The eigenvalues of C correspond 
to the eigenvalues of P after a sufficiently large number of iterations. The m x m 
matrix Y contains right eigenvectors of C. 

Sorting. The eigenvalues of C are sorted out in decreasing order according to 
their magnitude; the corresponding eigenvectors are also arranged accordingly. The 
eigenvectors of P are then given as 

x= VY. (21) 

Normalization and tolerance test. These eigenvectors are then normalized. 
Depending on the number of eigenvectors being calculated, they are checked for 
convergence. If no convergence is observed, X is substituted for U in the 
premultiplication phase and the entire process is repeated. 

As the number of iterations and/or m increase, the largest eigenvalues 
converge at a faster rate. The rate of convergence for these largest eigenvalues 
depends on sparsity and bandedness of the matrix. Typically, for m = 20, k = 10, in 
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FIG. 3. Comparison of eigenvalues from the lopsided iteration procedure for two cases: Case 1. 
m = 20, k = 10, 15 iterations; Case 2. m = 20, k = 5, 10 iterations (NACA 0012 airfoil, M = 0.8, inviscid 
flow, Gt=o”, E,=o. +=o). 
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FIG. 4. Comparison of “good” eigenvalues from the Lanczos procedure with “converged” eigen- 
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EE = 0). 
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15 iterations, about 12 eigenvalues converge. By increasing any of these parameters, 
a convergence can be obtained for a larger number of eigenvalues at the same rate 
or at a faster rate for the same number of eigenvalues. The eigenvalues from two 
different cases are compared in Fig. 3. In first case, m = 20, k = 10, and the number 
of iterations is 15. In the second case, m = 20, k = 5, and the number of iterations 
is 10. The largest eigenvalues converge quickly, the eigenvalues with smaller 
magnitudes converge slowly. Depending on the number of eigenvalues of interest to 

TABLE I 

Comparison of Eigenvalues From the Lanczos Procedure and 
the Lopsided Iteration Procedure (m = 20, k = 10, 15 Iterations) 

Lanczos Procedure Lopsided Iteration Procedure 

Real part Imaginary part Real part Imaginary part 

0.0 264.286865333 0.0 264.28685333 

0.0 -264.286865333 0.0 -264.28685333 

0.0 264.276867199 0.0 264.276867 199 

0.0 -264.276867199 0.0 -264.276867199 

0.0 231.004612882 0.0 231.004612889 

0.0 -231.004612882 0.0 -231.004612889 

0.0 230.989773391 0.0 230.989773392 

0.0 -230.989773391 0.0 -230.989773392 

0.0 228.836872362 0.0 228.836872357 

0.0 -228.836872362 0.0 -228.836872357 

0.0 228.827440150 0.0 228.827440152 

0.0 -228.827440150 0.0 -228.827440152 

0.0 204.475652580 -0.12733604 204.921209110 

0.0 -204.475652580 -0.12733604 -204.921209110 

0.0 204.394821069 0.119820597 204.290977827 

0.0 -204.394821069 0.119820597 -204.290977827 

0.0 202.158284441 -0.12231994 202.121476826 

0.0 -202.158284441 -0.12231994 -202.121476826 

0.0 202.141394198 0.713979301 199.552068301 

0.0 -202.141394198 0.7 13979301 -199.552068301 
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a researcher, m and k can be chosen accordingly to get a convergence within a 
specified number of iterations. 

This procedure requires much more computer memory and time than the 
Lanczos procedure. Also it can calculate only the eigenvalues with the largest 
magnitude. 

The comparison of “converged” eigenvalues from the lopsided iteration proce- 
dure with “good” eigenvalues from the Lanczos procedure is shown in Fig. 4. The 
agreement between these two different procedures for the estimated eigenvalues is 
very good. It should be noted that these eigenvalues are “accurate” estimates of the 
eigenvalues of the original matrix P. To illustrate the numerical accuracy of these 
procedures, numerical values of these eigenvalues are given in Table I. Table I 
contains all of the 20 eigenvalues calculated by the lopsided iteration procedure in 
case 1 as described above and the corresponding 20 eigenvalues from the Lanczos 
procedure. The eigenvalues from the lopsided iteration procedure that have not 
converged yet, also show a tendency towards convergence. The results from the 
modified Lanczos procedure could not be compared with the results from some 
standard routine from EISPACK, as EISPACK does not have a provision for 
handling very large, sparse matrices. A smaller problem could not be formed as for 
a small number of grid points, the Navier-Stokes solver was unstable and did not 
converge to a steady state. In this work, a comparison between the modified 
Lanczos procedure and the EISPACK routines was made for a mathematical 
example to check the computer programs. A more complete comparison for smaller 
physical problems is given in [ 181. 

CONCLUSION 

For the first time, a classical eigenvalue problem formulation and a practical 
calculation procedure for exact eigenvalues and corresponding eigenvectors are 
developed and applied to an Euler/Navier-Stokes solver. An algorithm is presented 
to convert a combination of block tridiagonal matrices into a two-dimensional 
matrix. Two different procedures are used for the eigensystem determination of a 
real, unsymmetric matrix. The results from these two procedures are in good agree- 
ment. The relative efftciency of these two procedures is also estimated. 

For calculation of 1000 eigenvalues, the Lanczos procedure required 4 min of 
CPU time on an IBM 3090 computer. Whereas the lopsided iteration procedure 
required 90 min of CPU time for only 40 eigenvalues. For a practical application, 
the Lanczos procedure is recommended. Use of lopsided iteration procedure should 
be limited to testing purposes only. 

Efforts are underway to use this eigensystem information for studying the 
transient stability of Navier-Stokes solvers, for developing reduced order models 
for nonlinear aerodynamics and for determining the modal behavior of a fluid in a 
fluid-structure interaction system. 
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